a2 United States Patent

US009304852B2

(10) Patent No.: US 9,304,852 B2

Reinart 45) Date of Patent: Apr. 5, 2016
(54) COMBINED ASYNCHRONOUS AND USPC ottt 714/763
SYNCHRONOUS FOUNTAIN CODE See application file for complete search history.
STORAGE IN AN OBJECT STORE
(71) Applicant: Quantum Corporation, San Jose, CA (56) References Cited
Us) U.S. PATENT DOCUMENTS
(72) Inventor: John Reinart, Roseville, MN (US) 8,386,838 B1* 2/2013 Byan 714/6.2
2007/0136525 Al* 6/2007 Readccccceveenee. . 711114
(73) Assignee: Quantum Corporation, San Jose, CA 2011/0113282 Al* 5/2011 De Spiegeleer et al. 714/6.13
(US) 2012/0054583 Al* 3/2012 Parketal. ..o 714/776
2014/0068386 Al* 3/2014 Chenetal.ccceeeeene. 714/776
(*) Notice: Subject. to any disclaimer,. the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 123 days.
() by as Primary Examiner — James C Kerveros
(21) Appl. No.: 14/179,726
57 ABSTRACT
22) Filed: Feb. 13, 2014
(22) File ¢ ’ Example apparatus and methods produce a set of rateless
(65) Prior Publication Data erasure codes (e.g., fountain codes) for a file stored in a
primary data store (e.g., hard drive) or in an archive system.
US 2015/0227416 Al Aug. 13,2015 The archive system may store the file in a redundant array of
51y Int.Cl independent disks (RAID). A first subset of the rateless era-
Gh Gn 0;5 F 1 110 (2006.01) sure codes are stored in an object storage using a synchronous
GO6F 17/30 (200 6.01) protocol. A second subset of rateless erasure codes are stored
HO3M 13/37 (2006.01) in the object storage using an asynchronous protocol. The
HOIM 13/15 (2006:01) object storage system may inform the archive system when
(52) US.Cl desired redundancy has been achieved or when desired redun-
CPC GOGF 11/10 (2013.01); GO6F 11/1076 dancy has been lost. The archive system may buffer rateless
(2013.01); GOGF 17/30082 (2’013.01). HO3M erasure codes before providing the codes to the object storage
13/154 (’2013.01); HO3M 13/373 (2613.01); to improve performance. A failure in the archive system or
GOGF 11/1068 (2013.01); GOGF 2211/1023 object storage system may be mitigated by retaining the file in
(2013.01) the primary data store until the desired redundancy is
(58) Field of Classification Search achieved.

CPC ... GOG6F 11/1076; GOGF 17/30082; GOGF
2211/1023; GOG6F 11/1068; HO3M 13/373

16 Claims, 10 Drawing Sheets

600

Start //
610
1 1

i Reeeive Request

620

Code Redundancy Blocks

; Produce Rateless Eragure }//

630

642

{ Store Synchronously

1 640

\\J But‘fs]
) S

&

643

} Store Asynchronously
|

43 No
e ’
R Error/Success? ——
e

Cuorrol Requester

e

o)

U.S. Patent

Apr. 5, 2016 Sheet 1 of 10

File System
100

inode
120

US 9,304,852 B2

Medadata

140

Memory

130

Figure 1

U.S. Patent Apr. 5, 2016 Sheet 2 of 10 US 9,304,852 B2

Primary Archive Object
Data Storage System Bl Storage
200 210 220

Figure 2

U.S. Patent Apr. 5, 2016 Sheet 3 of 10 US 9,304,852 B2

First Second Third
Pata Store ~ Data Store - Data Store
300 g 328

Figure 3

U.S. Patent Apr. 5, 2016 Sheet 4 of 10 US 9,304,852 B2

420

400 410

f/ store /—/ }‘fz’l‘\ 424
/\ 1 asyne

) ®
an w7 e

2

release
.y 42
g et I s
1o j.f
‘“\uﬁf’

Figure 4

U.S. Patent Apr. 5, 2016 Sheet 5 of 10 US 9,304,852 B2
Storel
301 o
» Success/Fail 1
al . '}
- L Store 2
02 e Success/Fail 2
Synchronous we .
®
@
ey Store 9
09 e Success/Fail 9
S
510 e Storel
L e of Store 11
Asynchronous 12
i1 -
313 e Buifer, Stove 12-13
== SUCCEEs Fai] 1]
et QuecensiFail 10
L
&
® ore 20
i Store 20
320

Figure 3

U.S. Patent Apr. 5, 2016 Sheet 6 of 10 US 9,304,852 B2

600
(Start } /

N 614
Receive Request -
e 620

Produce Rateless Frasure |~
Code Redundancy Blocks

y 630
<) l "’J
Stare Synchronously -
! 646
) ~
Store Asynchronously "
\ B30
Notify Requester ul

{ End }

Figure 6

U.S. Patent Apr. 5, 2016 Sheet 7 of 10 US 9,304,852 B2

- 600
< Start) "
¥ 610
_ . /
Receive Request ndl
¥ 20
Produce Rateless Erasure |7
Code Redundancy Blocks
630
642 7] Store Synchronousty -
i Buffer , 640
644 B Store Asynchronously "
S Flush

645 /\ No

et
N Error/Success? /;:}“‘
.\N“'M

*—vg.“__\ M““‘v
] ves 655
. S
Condrol Requester ml
IR SN
{ End)

Figure 7

U.S. Patent

Apr. 5, 2016

Sheet 8 of 10

US 9,304,852 B2

Processor
§10

Apparatus
800

Memaory
820

Interface
840

Logics
83¢

First Logic
832

Second Logic
834

Third Logic
836

Figure 8

U.S. Patent

Apr. 5,2016 Sheet 9 of 10 US 9,304,852 B2
Apparatus
809
Processor Memory
810 820
interface
830
Logics

First Logic
R332

Second Logic
834

Third Logic

Fourth Logic
838

Figure 9

U.S. Patent Apr. 5, 2016 Sheet 10 of 10 US 9,304,852 B2

Computer 1000
Process Data
1014 1816
Processor Memory
1002 1604
Bus 1008
Input/Qutput .
npt; ey Rateless Erasure Code Logic
Orts 1030
10160 HERY
Input/Output
Interface
1018
|
Disk Drive Network Device
1006 1020

Figure 10

US 9,304,852 B2

1
COMBINED ASYNCHRONOUS AND
SYNCHRONOUS FOUNTAIN CODE
STORAGE IN AN OBJECT STORE

BACKGROUND

File systems store files and store information about files.
The information stored in files may be referred to as data. The
information about files may be referred to as metadata. The
metadata may include, for example, a file name, a file size,
and other information. Some of the metadata for an individual
file may be stored in a data structure known as an inode. The
modes and metadata for a file system may be stored collec-
tively. Different approaches may be used to protect files and
information about files associated with a file system. For
example, an object store may interact with an archive system
to store a file or information about a file located in a primary
storage space (e.g., disk). To insure data protection, different
approaches for storing redundant copies of a file or portions of
a file have been employed. Erasure codes are one such
approach.

An erasure code is a forward error correction (FEC) code
for the binary erasure channel. The FEC facilitates transform-
ing a message of k symbols into a longer message with n
symbols such that the original message can be recovered from
a subset of the n symbols, k and n being integers. The original
message may be, for example, a file. The fraction r=k/n is
called the code rate, and the fraction k'/k, where k' denotes the
number of symbols required for recovery, is called the recep-
tion efficiency. Optimal erasure codes have the property that
any k out of the n code word symbols suffice to recover the
original message. Optimal codes may require extensive
memory usage, CPU time, or other resources when n is large.

Erasure codes are described in coding theory. Coding
theory is the study of the properties of codes and their fitness
for a certain purpose (e.g., backing up files). Codes may be
used for applications including, for example, data compres-
sion, cryptography, error-correction, and network coding.
Coding theory involves data compression, which may also be
referred to as source coding, and error correction, which may
also be referred to as channel coding. Fountain codes are one
type of erasure codes.

Fountain codes have the property that a potentially limit-
less sequence of encoding symbols may be generated from a
given set of source symbols in a manner that supports ideally
recovering the original source symbols from any subset of the
encoding symbols of size equal to or larger than the number of
source symbols. A fountain code may be optimal if the origi-
nal k source symbols can be recovered from any k encoding
symbols, k being an integer. Fountain codes may have effi-
cient encoding and decoding algorithms that support recov-
ering the original k source symbols from any k' of the encod-
ing symbols with high probability, where k' is just slightly
larger than k. A rateless code is distinguished from a code that
exhibits a fixed code rate.

Using a fixed-rate erasure code, a receiver missing a source
symbol faces the coupon collectors problem. The coupon
collector’s problem involves a receiver successfully receiving
an encoding symbol that it does not already have. The coupon
collectors problem becomes more apparent when a traditional
short-length erasure code is used because the file being
backed up is split into several blocks, each serving as an
original message and each being separately encoded. In this
scenario, the receiver must now collect the required number
of missing encoding symbols for each block. Conversely,
using a rateless erasure code (e.g., fountain code), a receiver

10

15

20

25

30

35

40

45

50

55

60

65

2

need only be able to retrieve any subset of encoding symbols
larger than the set of source symbols.

Object based storage systems may employ rateless erasure
code technology (e.g., fountain codes) to provide a flexible
level of data redundancy. The appropriate or even optimal
level of data redundancy produced using a rateless erasure
code system may depend, for example, on the value of the
data. The actual level of redundancy achieved using a rateless
erasure code system may depend, for example, on the differ-
ence between the number of readable redundancy blocks
(e.g., erasure codes) written by the system and the number of
redundancy blocks needed to reconstruct the original data.
For example, if twenty redundancy blocks are written and
only eleven redundancy blocks are needed to reconstruct the
original data that was protected by writing the redundancy
blocks, then the original data may be reconstructed even if
nine of the redundancy blocks are damaged or otherwise
unavailable.

Conventional systems may use a pre-defined setting to
determine whether a store operation will operate synchro-
nously or asynchronously. The store operation may be the
operation that is tasked with writing the redundancy blocks
(e.g., erasure codes) in the object store using erasure codes. A
synchronous store operation may normally generate all the
redundancy blocks to be written before completing the store
operation but on occasion may operate one block at a time.
This approach yields the result that the optimal redundancy
level is in place before the store operation signals its comple-
tion. Conversely, an asynchronous store operation may not
generate all the redundancy blocks to be written before com-
pleting the store operation. An asynchronous store operation
may generate the minimal number of redundancy blocks
required to achieve some redundancy and protection, may
then signal completion of the store operation, and may then
write additional redundancy blocks until an optimal redun-
dancy or protection is achieved. An asynchronous store
operation may be faster than a synchronous store operation
for achieving minimal protection. Conventional systems may
be caught on the horns of a dilemma that pits achieving faster
but sub-optimal redundancy against achieving slower but
optimal redundancy.

Archive systems may choose not to employ the faster asyn-
chronous store approach to avoid producing less than optimal
redundancy. For example, when an archive system uses an
object storage to provide a redundant tertiary copy of an
original data file, it may be unacceptable to employ the faster
asynchronous store approach that causes a store operation to
report completion before optimal redundancy is actually
achieved. Consider an archive system that uses a conventional
RAID (redundant array of independent disks) (e.g., RAID-6)
to provide a level of redundancy for the primary storage of
original data. If the asynchronous approach is employed, and
the store operation that is intended to produce another level of
redundancy for the primary storage of the original data is
allowed to indicate completion before optimal redundancy is
actually achieved, then a desired or even required level of
redundancy may not be achieved and data may be at risk.
Additional risk may arise when the completion of the store
operation allows the primary data storage to release the first
copy of the original data. Therefore, conventional archive
systems interacting with object storage systems may have
been constrained to always use the slower synchronous
approach.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate various

US 9,304,852 B2

3

example systems, methods, and other example embodiments
of'various aspects of the invention. It will be appreciated that
the illustrated element boundaries (e.g., boxes, groups of
boxes, or other shapes) in the figures represent one example of
the boundaries. One of ordinary skill in the art will appreciate
that in some examples one element may be designed as mul-
tiple elements or that multiple elements may be designed as
one element. In some examples, an element shown as an
internal component of another element may be implemented
as an external component and vice versa. Furthermore, ele-
ments may not be drawn to scale.

FIG. 1 illustrates a file system.

FIG. 2 illustrates an example three level system that
includes a primary data storage, an archive system, and an
object storage.

FIG. 3 illustrates an example three level data store system.

FIG. 4 illustrates example data flows and operations in a
three level data store system.

FIG. 5 illustrates example asynchronous and synchronous
communications of fountain codes.

FIG. 6 illustrates an example method associated with a
combined asynchronous and synchronous fountain code stor-
age system.

FIG. 7 illustrates an example method associated with a
combined asynchronous and synchronous fountain code stor-
age system.

FIG. 8 illustrates an example apparatus configured to per-
form combined asynchronous and synchronous fountain
code storage.

FIG. 9 illustrates an example apparatus configured to per-
form combined asynchronous and synchronous fountain
code storage.

FIG. 10 illustrates an example apparatus associated with
performing a combined asynchronous and synchronous foun-
tain code storage protocol.

DETAILED DESCRIPTION

Example apparatus and methods facilitate using a com-
bined synchronous and asynchronous store operation to
simultaneously improve achieving optimal redundancy and
achieving minimal redundancy in a three-level storage sys-
tem, where the third level stores erasure codes in an object
store. The combined synchronous and asynchronous store
operation may be performed between an archive system and
anobject storage system that are being used to protect data for
aprimary data storage. Example apparatus and methods may
cause the original data in the primary data storage to be
retained until the store operation is complete or until optimal
redundancy is achieved. Example apparatus and methods
may also allow the store operation to complete faster by using
a flush operation that triggers generation of redundancy
blocks (e.g., erasure codes) needed to achieve optimal redun-
dancy. In one embodiment, the original data in the primary
data store is held until after the flush operation is completed.
To improve speed, example apparatus and methods allow an
object storage to notify an archive system that minimal redun-
dancy has been achieved so that a transition from a slower
synchronous protocol to a faster asynchronous protocol may
be made. To improve reliability, example apparatus and meth-
ods also allow an object storage to notify an archive system
that optimal redundancy has been lost or that an object has
become unreadable so that remedial action may be taken.
When the object storage notifies the archive system that an
object has become unreadable or damaged, the archive sys-
tem may re-invoke the store operation in an attempt to achieve
optimal redundancy. In one embodiment, the archive system

5

10

15

20

25

30

35

40

45

50

55

60

65

4

may re-invoke the store operation again after accessing the
original data in the primary storage system.

To improve overall system speed, rather than work on a
single object like conventional systems, example apparatus
and methods may operate on a group of objects. The group of
objects may be, for example, erasure codes associated with a
number of files to be protected in the object store. Working on
a group of objects may facilitate improving results through
buffering. Thus, example apparatus and methods may
improve or even optimize both the performance of a store
operation and the time consumed to achieve optimal redun-
dancy.

Figure one illustrates a file system 100. While a user may
refer to a file 130 using a file name, the file system 100 may
refer to the file 130 using an mode 120. When a change is
made to the file 130, there may also be a change to the
metadata 140 of the file. The metadata 140 may include, for
example, the name of a file, the size of a file, and other
information. In some occurrences, the updated file 130 may
be stored in memory 150. Similarly, in some occurrences, the
updated metadata 140 may be stored in memory 150. Ulti-
mately, the updated file 130 and the updated metadata 140
may be stored on disk 160. The disk 160 may serve as a
primary data store for the file. Users may want to have more
than one copy of a file. Therefore, users may employ multi-
level systems that include an archive system for a first level of
redundancy and an object storage for a second or even third
level of redundancy.

FIG. 2 illustrates a three level system that includes a pri-
mary data storage 200, an archive system 210, and an object
storage 220. Object storage 220, which may perform object-
based storage, provides a storage architecture that manages
data as objects. Conversely, primary data storage 200 may
manage data using a file system that manages data using a file
hierarchy. Primary data storage 200 may use a block storage
approach that manages data as blocks with sectors in tracks.
Object storage 220 may store objects, where an object
includes, for example, data to be stored, metadata about the
data, a globally unique identifier, or other information. Object
storage 220 may be implemented at different levels including,
for example, at a device level that includes an object storage
device, at a system level, at an interface level, or at other
levels. Object storage 220 may provide capabilities including,
for example, interfaces that may be directly programmable by
an application, a namespace that can span multiple instances
of physical hardware, data replication at object-level granu-
larity, data distribution at object-level granularity, or other
capabilities.

Archive system 210 may store data that is no longer in
day-to-day use but still needs to be retained. A backup system
may be configured to provide rapid recovery of operational
data while archive system 210 may not be configured for
equally rapid recovery but rather for longer term storage.
Archive system 210 may be configured to store data for long
periods of time (e.g., years, decades). It may take longer to
retrieve data from archive system 210 than from, for example,
an online backup system. However, archive system 210 may
be configured to allow data to be searched. Since archive
system 210 may be tasked with storing data for a long time,
archive system 210 may want to have a redundant copy of a
file stored in another system. Thus, archive system 210 may
use object storage 220 to store redundancy blocks produced in
accordance with a rateless erasure code process.

Conventionally, the archive system 210 may store a file in
the object storage 220 using a store operation. Conventional
systems may take an undesirably long time to complete the
store operation. The performance of the store operation may

US 9,304,852 B2

5

be controlled, for example, by an X/Y redundancy policy (X
andY being integers, X being larger than Y). Conventionally,
all X redundancy blocks may be stored by the object storage
220 before the store operation is allowed to complete. Storing
all X redundancy blocks achieves optimum redundancy but
storing just X-Y redundancy blocks would achieve a mini-
mum acceptable redundancy. Storing all X blocks takes
longer than storing just X-Y blocks. However, simply report-
ing completion after X-Y blocks have been stored may also be
undesirable because the required redundancy may not be
achieved.

Example apparatus and methods apply a hybrid approach
where a store operation may store the minimum X-Y blocks
using a synchronous approach and then store the remaining
blocks using an asynchronous approach. In one embodiment,
the asynchronous approach may use a flush functionality
and/or a notify functionality to improve processing time and
reliability. Example apparatus and methods may cause the
original copy of the data being protected by the store opera-
tion to be retained in the primary data storage until the total X
blocks have been stored. If an error occurs after the X-Y
blocks have been stored but before all the X blocks have been
stored, then the store operation may be re-invoked using, if
needed, the original data that was retained in the primary data
storage. Retaining a copy of the data that is being protected by
the store operation outside the archive system 210 and outside
the object storage 220 facilitates mitigating issues that may
arise when an error occurs inside the archive system 210 or
the object storage 220. Thus, example apparatus and methods
may cause a minimum number of redundancy blocks to be
stored using a synchronous approach but may then cause the
remaining redundancy blocks to be stored using an asynchro-
nous approach. In one embodiment, the asynchronous portion
may have flush and notify capabilities. In one embodiment,
the archive system 210 may use the object storage 220 as a
third (or Nth, n being an integer greater than or equal to three)
copy of data. In this embodiment, the archive system 210 may
asynchronously store all of the blocks.

FIG. 3 illustrates a more general three level storage hierar-
chy than that illustrated in FIG. 2. The more general three
level storage hierarchy includes a first data store 300, a second
data store 310, and a third data store 320. Example systems
and methods may seek to protect a file that is present in the
first data store 300 by archiving the file in the second data
store 310 and by storing a redundant copy in the third data
store 320. The first data store 300 may be associated with, for
example, a file system, and thus may be configured to support
file system operations. The second data store 310 may be
associated with, for example, long term storage and thus may
be configured to support archival operations. The third data
store 320 may be associated with, for example, object storage,
and thus may be configured to support object retrieval.

FIG. 4 illustrates example data flows and operations in a
three level data store system. A file 402 may be stored in a
primary data storage 400 (e.g., disk). Primary data storage
400 may issue a store command to cause a copy 412 of the file
402 to be stored in a secondary data storage 410 (e.g., archive
system) and a tertiary data storage 420 (e.g., object store). The
store command may cause the secondary data storage 410 to
produce erasure codes to be stored in the tertiary storage 420.
The erasure codes may be produced according to a redun-
dancy policy. For example, a 20/11 may indicate that twenty
codes are to be written and that a message may be recovered
using any nine of the twenty codes. Example apparatus and
methods may, therefore, perform a combined synchronous
and asynchronous approach to provide the erasure codes from
the secondary storage 410 to the tertiary storage 420. For

10

15

20

25

30

35

40

45

50

55

60

65

6

example, a 9 sync command may be employed to provide nine
erasure codes to the tertiary storage 420 using a synchronous
protocol and an 11 async command may be employed to
provide the remaining eleven erasure codes to the tertiary
storage 420. The erasure codes 422, and 424 through 428 may
be stored on the tertiary storage 420. To facilitate changing
from the initial slower synchronous approach to the subse-
quent faster asynchronous approach, the tertiary storage 420
may provide a 9 pass message to the secondary storage 410 to
indicate that the first nine erasure codes have been stared. To
facilitate completing the store operation, the tertiary storage
420 may also provide an 11 pass message to the secondary
storage 410 to indicate that the remaining eleven erasure
codes have been stored. To facilitate taking remedial action,
tertiary storage 420 may also be configured to provide an
error message to the secondary storage 410. The error mes-
sage may cause the store operation to be restarted using the
copy of the file 412, if it is still available, or the original file
402 stored on the primary data storage.

FIG. 5 illustrates differences between a synchronous pro-
tocol and an asynchronous protocol. The synchronous proto-
col proceeds in lock step where a store 1 message associated
with storing an erasure code 501 is followed by a success 1 or
fail 1 message associated with storing the erasure code 501.
The store 2 message associated with storing an erasure code
502 may not be sent until after the success 1 or fail 1 message
has been received. The synchronous protocol may proceed in
this fashion until the desired number (e.g., 9) erasure codes
have been written. In one embodiment, the synchronous pro-
tocol may produce all nine erasure codes and try to store all
nine erasure codes at once, and may not proceed until all nine
erasure codes have been stored. In one embodiment, the syn-
chronous protocol may only proceed when all the erasure
codes associated with an operation have been processed, thus
the generation or storing of an individual erasure code may
delay the completion of the collective operation.

Once the slower synchronous approach has finished, a
faster asynchronous approach may be used to store the
remaining (e.g., 11) erasure codes. In the asynchronous
approach, store commands can be sent without waiting for a
corresponding success/fail message. For example, a store 10
command associated with storing an erasure code 510 may be
sent and then a store 11 command associated with storing an
erasure code 511 may be sent without waiting for a response
to the store 10 command. Additionally, erasure codes may be
buffered to improve the performance of input/output opera-
tions. Thus, a store 12-13 command may be sent after buff-
ering erasure codes 512 and 513. In one embodiment, in the
asynchronous approach, erasure codes may be generated
individually and provided individually, without concern for
the status of the generating or providing of other erasure
codes.

Some portions of the detailed descriptions herein are pre-
sented in terms of algorithms and symbolic representations of
operations on data bits within a memory. These algorithmic
descriptions and representations are used by those skilled in
the art to convey the substance of their work to others. An
algorithm, here and generally, is conceived to be a sequence
of operations that produce a result. The operations may
include physical manipulations of physical quantities. Usu-
ally, though not necessarily, the physical quantities take the
form of electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipu-
lated. The physical manipulations create a concrete, tangible,
useful, real-world result.

Ithas proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, ele-

US 9,304,852 B2

7

ments, symbols, characters, terms, or numbers. It should be
borne in mind, however, that these and similar terms are to be
associated with the appropriate physical quantities and are
merely convenient labels applied to these quantities. Unless
specifically stated otherwise, it is to be appreciated that
throughout the description, terms including processing, com-
puting, and determining refer to actions and processes of a
computer system, logic, processor, or similar electronic
device that manipulates and transforms data represented as
physical (electronic) quantities.

Example methods may be better appreciated with refer-
ence to flow diagrams. For purposes of simplicity of expla-
nation, the illustrated methodologies are shown and described
as a series of blocks. However, it is to be appreciated that the
methodologies are not limited by the order of the blocks, as
some blocks can occur in different orders or concurrently
with other blocks from that shown and described. Moreover,
less than all the illustrated blocks may be required to imple-
ment an example methodology. Blocks may be combined or
separated into multiple components. Furthermore, additional
oralternative methodologies can employ additional, notillus-
trated blocks.

FIG. 6 illustrates a method 600 associated with combined
asynchronous and synchronous fountain code storage in an
object store. Method 600 includes, at 610, receiving, in a
second data store, a request to increase the redundancy level
of a file stored in a first data store. The redundancy may be
increased by storing erasure codes in a third data store. In one
embodiment, the first data store may be a disk drive or drives
associated with a file system or may be a memory (e.g., RAM,
SSD) associated with a file system. In one embodiment, the
second data store may be an archive system. The archive
system may store a file using, for example a redundant array
of independent disks (RAID). In one embodiment, the third
data store may be an object storage system. The redundancy
level for a file stored in the primary data store (e.g., disk) or
secondary data store (e.g., archive system) may be increased
by storing erasure codes in the tertiary data store (e.g., object
store), where the erasure codes are sufficient to recover the
file.

Thus, method 600 includes, at 620, producing a number of
rateless erasure codes to be provided to the third data store to
increase the redundancy level of the file. The number of
rateless erasure codes to be produced may be controlled by a
redundancy policy. The redundancy policy may identify a
total number of rateless erasure codes to be stored and a
minimum number of rateless erasure codes to be stored. The
minimum number is less than the total number. For example
a 20/11 redundancy policy may be employed to control pro-
ducing twenty erasure codes, where any nine of the twenty
erasure codes suffice to recreate a message (e.g., file) for
which the erasure codes were produced. In one embodiment,
producing the rateless erasure codes may be performed
according to a user configurable code rate.

Method 600 also includes, at 630, providing the minimum
number of rateless erasure codes to the third data store using
a synchronous approach. In one embodiment, the synchro-
nous approach may involve generating one erasure code and
then providing the one erasure code from the second data
store to the third data store and then waiting for the erasure
code to be stored on the third data store before generating or
providing the next erasure code. In one embodiment, the
synchronous approach may involve generating all of the
minimum number of rateless erasure codes, and then provid-
ing all of the minimum number of rateless erasure codes to the
third data store and then waiting for the erasure codes to be
stored. The synchronous approach may continue until a first

10

25

40

45

55

8

number of erasure codes have been stored. The first number
may be, for example, the minimum number of erasure codes
needed to recover the message. Different first numbers of
erasure codes may be provided using the synchronous
approach. Since different numbers of erasure codes may be
provided, method 600 may include determining a remaining
number of rateless erasure codes equal to the difference
between the total number and the minimum number.

Method 600 also includes, at 640, upon determining that
the minimum number of rateless erasure codes have been
stored in the third data store, providing the remaining number
of rateless erasure codes to the third data store using an
asynchronous approach. In one embodiment, erasure codes
may be generated and provided individually. In another
embodiment, all the erasure codes may be generated at once
and then provided individually or in buffered groups. In the
asynchronous approach, store commands for individual era-
sure codes or groups of buffer codes may be sent before
corresponding success or failure messages are received.

Method 600 also includes, at 650, upon determining that
the total number of rateless erasure codes have been stored by
the third data store, sending a signal to the first data store.
More generally, method 600 may include, at 650, notifying a
requester concerning the progress of writing the erasure
codes to produce the additional redundancy. The requester
may be the data store or application that requested that a
redundant copy of a file by stored. The signal may indicate
that the total number of rateless erasure codes have been
stored in the third data store. In one embodiment, the signal
may be a control signal concerning retention of the file in the
first data store. For example, the file for which erasure codes
are being stored in the third data store may be retained in the
first data store until the desired number of erasure codes have
been stored. Thus, in one embodiment, the signal sent at 650
may control the first data store to release the file.

FIG. 7 illustrates another embodiment of method 600. This
embodiment provides more detail for the asynchronous pro-
tocol. In one embodiment, providing the remaining number
of rateless erasure codes to the third data store using the
asynchronous approach at 640 includes buffering one or more
rateless erasure codes in the second data store at 642. The
erasure codes may be buffered before providing the one or
more rateless erasure codes to the third data store. Buffering
the one or more rateless erasure codes at 642 may facilitate
improving the performance of an input/output interface or
operation. For example, four erasure codes may be buffered to
produce an output block that matches the block size of an
input/output interface or operation. In one embodiment, pro-
viding the remaining number of rateless erasure codes to the
third data store using the asynchronous approach includes
forcing a flush at 644 of a rateless erasure code from the
second data store to the third data store. A flush may be used
when, for example, a desired redundancy has been achieved
even though erasure codes remain to be stored.

This embodiment of method 600 also includes, at 645,
making a determination of whether an error or success indi-
cator has been received. More generally, method 600
includes, at 645, determining whether a notification has been
received concerning the storage of erasure codes. The notifi-
cation may take different forms.

In one embodiment, method 600 may include receiving a
notification from the third data store that the minimum num-
ber of rateless erasure codes have been stored in the third data
store. Once the minimum number of rateless erasure codes
have been written, method 600 may take different actions
including, for example, releasing a local copy of the file being
stored. The notification may also report that the total number

US 9,304,852 B2

9

of rateless erasure codes have been stored in the third data
store. Once the total number of rateless erasure codes have
been written, a signal may be sent to the requester to control
the requester to, for example, release the copy of the file
stored in the primary data storage. Thus, method 600 may
include, at 655, controlling the requester.

Not all attempts to write erasure codes will succeed. Addi-
tionally, an erasure code that was stored in the third data store
(e.g., object store) may be compromised, deleted, or other-
wise become unavailable. Therefore, this embodiment of
method 600 may include receiving a notification from the
third data store that a rateless erasure code has become
unavailable and, upon determining that a desired redundancy
level for the file is not present, selectively re-performing a
store operation using data present in the second data store or
using data present in the first data store. Re-performing the
store operation may include producing one or more rateless
erasure codes, selectively providing one or more rateless era-
sure codes to the third data store using a synchronous
approach, and selectively providing one or more rateless era-
sure codes to the third data store using an asynchronous
approach.

In one example, a method may be implemented as com-
puter executable instructions. Thus, in one example, a com-
puter-readable medium may store computer executable
instructions that if executed by a machine (e.g., processor)
cause the machine to perform method 600. While executable
instructions associated with method 600 are described as
being stored on a computer-readable medium, it is to be
appreciated that executable instructions associated with other
example methods described herein may also be stored on a
computer-readable medium.

The following includes definitions of selected terms
employed herein. The definitions include various examples
and/or forms of components that fall within the scope of a
term and that may be used for implementation. The examples
are not intended to be limiting. Both singular and plural forms
of terms may be within the definitions.

References to “one embodiment”, “an embodiment”, “one
example”, “an example”, and other similar terms, indicate
that the embodiment(s) or example(s) so described may
include a particular feature, structure, characteristic, prop-
erty, element, or limitation, but that not every embodiment or
example necessarily includes that particular feature, struc-
ture, characteristic, property, element or limitation. Further-
more, repeated use of the phrase “in one embodiment” does
not necessarily refer to the same embodiment, though it may.

ASIC: application specific integrated circuit.

CD: compact disk.

CD-R: CD recordable.

CD-RW: CD rewriteable.

DVD: digital versatile disk and/or digital video disk.

HTTP: hypertext transfer protocol.

LAN: local area network.

RAM: random access memory,

DRAM: dynamic RAM.

SRAM: synchronous RAM.

ROM: read only memory,

PROM: programmable ROM.

SSD: solid state drive

SAN: storage area network

USB: universal serial bus.

WAN: wide area network.

“Computer component”, as used herein, refers to a com-
puter-related entity (e.g., hardware, firmware, software in
execution, combinations thereof). Computer components
may include, for example, a process running on a processor, a

10

15

20

25

30

35

40

45

50

55

60

10

processor, an object, an executable, a thread of execution, and
a computer. A computer component(s) may reside within a
process and/or thread. A computer component may be local-
ized on one computer and/or may be distributed between
multiple computers.

“Computer-readable storage medium”, as used herein,
refers to a non-transitory medium that stores instructions
and/or data. A computer-readable medium may take forms,
including, but not limited to, non-volatile media, and volatile
media. Non-volatile media may include, for example, optical
disks, magnetic disks, and other disks. Volatile media may
include, for example, semiconductor memories, dynamic
memory, and other memories Common forms of a computer-
readable medium may include, but are not limited to, a floppy
disk, a flexible disk, a hard disk, a magnetic tape, other mag-
netic medium, an ASIC, a CD, other optical medium, a RAM,
a ROM, a memory chip or card, a memory stick, and other
media from which a computer, a processor or other electronic
device can read.

“Data store”, as used herein, refers to a physical and/or
logical entity that can store data. A data store may be, for
example, a database, a table, a file, a data structure (e.g. a list,
a queue, a heap, a tree) a memory, a register, or other reposi-
tory. In different examples, a data store may reside in one
logical and/or physical entity and/or may be distributed
between two or more logical and/or physical entities.

“Logic”, as used herein, includes but is not limited to
hardware, firmware, software in execution on a machine,
and/or combinations of each to perform a function(s) or an
action(s), and/or to cause a function or action from another
logic, method, and/or system. Logic may include, for
example, a software controlled microprocessor, a discrete
logic (e.g., ASIC), an analog circuit, a digital circuit, a pro-
grammed logic device, or a memory device containing
instructions. Logic may include one or more gates, combina-
tions of gates, or other circuit components. Where multiple
logical logics are described, it may be possible to incorporate
the multiple logical logics into one physical logic. Similarly,
where a single logical logic is described, it may be possible to
distribute that single logical logic between multiple physical
logics.

An “operable connection”, or a connection by which enti-
ties are “operably connected”, is one in which signals, physi-
cal communications, or logical communications may be sent
or received. An operable connection may include a physical
interface, an electrical interface, or a data interface. An oper-
able connection may include differing combinations of inter-
faces or connections sufficient to allow operable control. For
example, two entities can be operably connected to commu-
nicate signals to each other directly or through one or more
intermediate entities (e.g., processor, operating system, logic,
software). Logical or physical communication channels can
be used to create an operable connection.

“Signal”, as used herein, includes but is not limited to,
electrical signals, optical signals, analog signals, digital sig-
nals, data, computer instructions, processor instructions,
messages, a bit, or a bit stream, that can be received, trans-
mitted and/or detected.

“Software”, as used herein, includes but is not limited to,
one or more executable instructions that cause a computer,
processor, or other electronic device to perform functions,
actions and/or behave in a desired manner. “Software” does
not refer to stored instructions being claimed as stored
instructions per se (e.g., a program listing). The instructions
may be embodied in various forms including routines, algo-

US 9,304,852 B2

11

rithms, modules, methods, threads, or programs including
separate applications or code from dynamically linked librar-
ies.

“User”, as used herein, includes but is not limited to one or
more persons, software, logics, applications, computers or
other devices, or combinations of these.

FIG. 8 illustrates an apparatus 800 that includes a processor
810, a memory 820, and a set 830 of logics that is connected
to the processor 810 and memory 820 by an interface 840. In
one embodiment, the apparatus 800 may be an archive system
positioned in a communication path between a primary data
storage and an object store.

The set 830 of logics may include a first logic 832 that is
configured to produce a set of fountain codes for a file. The set
of fountain codes are to be stored in an object store. Recall
that the number of fountain codes to be generated and stored
may be controlled by a redundancy policy. For example, a
20/11 policy may indicate that twenty total fountain codes are
to be stored and that any nine of the fountain codes may
suffice to reproduce the message (e.g., file, portion of a file)
for which the fountain codes were produced. The minimum
number of fountain codes required to achieve some redun-
dancy may be stored using one approach (e.g., synchronous)
and the remaining number of fountain codes may be stored
using another (e.g., asynchronous) approach. The total num-
ber of fountain codes to be stored may be sub-divided in
different ways.

The apparatus 800 may also include a second logic 834 that
is configured to cause a first subset of the set of fountain codes
to be provided to the object store using a synchronous proto-
col. In one embodiment, the second logic 834 may provide a
fountain code to the object store and then wait to receive
confirmation from the object store that the fountain code was
stored before providing the next fountain code. In one
embodiment, the second logic 834 may provide a group of
fountain codes to the object store and then wait to receive
notification from the object store concerning the group of
fountain codes. In one embodiment, the second logic 834 may
control the first logic 832 to produce fountain codes one at a
time, or in a group, provide the individual fountain code or
group to the object store, and then wait for the fountain
code(s) to be stored before controlling the first logic 832 to
produce another fountain code(s).

The apparatus 800 may also include a third logic 836 thatis
configured to cause a second, disjoint subset of the set of
fountain codes to be provided to the object store using an
asynchronous protocol. The third logic 836 may provide a
fountain code to the object store and then provide another
fountain code to the object store without waiting to receive
confirmation from the object store that the first fountain code
was stored. In one embodiment, the third logic 836 may
control the first logic 832 to produce fountain codes without
waiting for notification about the storage of a fountain code.

In one embodiment, the third logic 836 may be configured
to selectively buffer members of the second subset as part of
the asynchronous protocol. A first group of erasure codes may
be buffered and then provided to the object store and then a
second group of erasure codes may be buffered and provided
to the object store before receiving confirmation that the
erasure codes in the first buffer were stored. In one embodi-
ment, the third logic 836 may be configured to selectively
flush members of the second subset to the object store as part
of the asynchronous protocol.

In one embodiment, the first logic 832, the second logic
834, and the third logic 836 may be configured to interact,
serially or substantially in parallel, with a plurality of objects
associated with two or more files. Interacting with objects

10

15

20

25

30

35

40

45

50

55

60

65

12

associated with two or more files may facilitate increasing the
efficiency of an input/output interface used to communicate
erasure codes from the archive system to the object store. For
example, a single erasure code may consume less than the
total amount of data that can be communicated in a single
communication between the archive system and the object
store. If multiple files are having erasure codes written to the
object store, there may be additional erasure codes waiting
storage that can be used to populate a buffer.

FIG. 9 illustrates another embodiment of apparatus 800.
This embodiment includes a fourth logic 838, The fourth
logic 838 may be configured to cause the file to be released
from the primary data storage upon determining that the set of
fountain codes have been stored in the object store. Keeping
the copy of the file in the primary data storage until the erasure
codes have been successfully stored in the object store facili-
tates maintaining a desired first level of redundancy while the
desired second level of redundancy is being achieved. In one
embodiment, the fourth logic 838 is configured to control the
first logic 832, the second logic 834, and the third logic 836 to
store in the object store additional fountain codes for the file
upon determining that a threshold number of fountain codes
for the file are unavailable in the object store.

FIG. 10 illustrates an example computing device in which
example systems and methods described herein, and equiva-
lents, may operate. The example computing device may be a
computer 1000 that includes a processor 1002, a memory
1004, and input/output ports 1010 operably connected by a
bus 1008. In one example, the computer 1000 may include a
rateless erasure code logic 1030 that is configured to produce
and store erasure codes in an object store using a combined
asynchronous and synchronous approach. In different
examples, the logic 1030 may be implemented in hardware,
software, firmware, and/or combinations thereof. While the
logic 1030 is illustrated as a hardware component attached to
the bus 1008, it is to be appreciated that in one example, the
logic 1030 could be implemented in the processor 1002.

Thus, logic 1030 may provide means (e.g., hardware, soft-
ware, firmware, circuit) for producing rateless erasure code
redundancy blocks for a file to be replicated from an archive
system to an object storage system. The rateless erasure code
redundancy blocks may be, for example, fountain codes.
Logic 1030 may also provide means (e.g., hardware, soft-
ware, firmware, circuit) for causing rateless erasure code
redundancy blocks to be stored in the object storage system
using a synchronous protocol. Logic 1030 may also provide
means (e.g., hardware, software, firmware, circuit) for caus-
ing rateless erasure code redundancy blocks to be stored in the
object storage system using an asynchronous protocol. Caus-
ing the rateless erasure code redundancy blocks to be stored
may include providing the erasure codes and control signals
to the object storage. In one embodiment, a copy of the file
may be maintained in a primary data storage until the syn-
chronous protocol and the asynchronous protocol have com-
pleted successfully.

The means associated with logic 1030 may be imple-
mented, for example, as an ASIC that implements the func-
tionality of apparatus described herein. The means may also
be implemented as computer executable instructions that
implement the functionality of methods described herein and
that are presented to computer 1000 as data 1016 that are
temporarily stored in memory 1004 and then executed by
processor 1002.

Generally describing an example configuration of the com-
puter 1000, the processor 1002 may be a variety of various
processors including dual microprocessor and other multi-
processor architectures. A memory 1004 may include volatile

US 9,304,852 B2

13

memory and/or non-volatile memory. Non-volatile memory
may include, for example, ROM, PROM, and other memory.
Volatile memory may include, for example, RAM, SRAM,
DRAM, and other memory.

A disk 1006 may be operably connected to the computer
1000 via, for example, an input/output interface (e.g., card,
device) 1018 and an input/output port 1010. The disk 1006
may be, for example, a magnetic disk drive, a solid state disk
drive, a floppy disk drive, a tape drive, a Zip drive, a flash
memory card, a memory stick, or other device. Furthermore,
the disk 1006 may be a CD-ROM drive, a CD-R drive, a
CD-RW drive, a DVD ROM drive, a Blu-Ray drive, an HD-
DVD drive, or other device. The memory 1004 can store a
process 1014 and/or a data 1016, for example. The disk 1006
and/or the memory 1004 can store an operating system that
controls and allocates resources of the computer 1000.

The bus 1008 may be a single internal bus interconnect
architecture and/or other bus or mesh architectures. While a
single bus is illustrated, it is to be appreciated that the com-
puter 1000 may communicate with various devices, logics,
and peripherals using other busses (e.g., PCIE, 1394, USB,
Ethernet). The bus 1008 can be types including, for example,
a memory bus, a memory controller, a peripheral bus, an
external bus, a crossbar switch, and/or a local bus.

The computer 1000 may interact with input/output devices
via the /o interfaces 1018 and the input/output ports 1010.
Input/output devices may be, for example, a keyboard, a
microphone, a pointing and selection device, cameras, video
cards, displays, the disk 1006, the network devices 1020, and
other devices. The input/output ports 1010 may include, for
example, serial ports, parallel ports, and USB ports.

The computer 1000 can operate in a network environment
and thus may be connected to the network devices 1020 via
the i/o interfaces 1018, and/or the i/o ports 1010. Through the
network devices 1020, the computer 1000 may interact with a
network. Through the network, the computer 1000 may be
logically connected to remote computers. Networks with
which the computer 1000 may interact include, but are not
limited to, a LAN, a WAN, and other networks.

While example systems, methods, and other embodiments
have been illustrated by describing examples, and while the
examples have been described in considerable detail, it is not
the intention of the applicants to restrict or in any way limit
the scope of the appended claims to such detail. It is, of
course, not possible to describe every conceivable combina-
tion of components or methodologies for purposes of describ-
ing the systems, methods, and other embodiments described
herein. Therefore, the invention is not limited to the specific
details, the representative apparatus, and illustrative
examples shown and described. Thus, this application is
intended to embrace alterations, modifications, and variations
that fall within the scope of the appended claims.

To the extent that the term “includes” or “including” is
employed in the detailed description or the claims, it is
intended to be inclusive in a manner similar to the term
“comprising” as that term is interpreted when employed as a
transitional word in a claim.

To the extent that the term “or” is employed in the detailed
description or claims (e.g., A or B) it is intended to mean “A
or B or both”. When the applicants intend to indicate “only A
or B but not both” then the term “only A or B but not both” will
be employed. Thus, use of the term “or” herein is the inclu-
sive, and not the exclusive use. See, Bryan A. Garner, A
Dictionary of Modern Legal Usage 624 (2d. Ed. 1995).

5

15

20

25

30

35

40

45

50

55

60

65

14

What is claimed is:

1. A non-transitory computer-readable storage medium
storing computer-executable instructions that when executed
by a computer cause the computer to perform a method, the
method comprising:

receiving a request to increase the redundancy level of afile

stored in a first data store, where the first data store is a
disk drive associated with a file system or memory asso-
ciated with a file system;

producing a number of rateless erasure codes to be pro-

vided from a second data store to a third data store to
increase the redundancy level of the file, where the sec-
ond data store is an archive system and the third data
store is an object storage system, where the number of
rateless erasure codes is controlled by a redundancy
policy, where the redundancy policy identifies a total
number of rateless erasure codes to be stored in the first
data store, in the second data store, or in the third data
store, and a minimum number of rateless erasure codes
to be stored in the first data store, in the second data
store, or in the third data store, where the minimum
number is less than the total number;

providing the minimum number of rateless erasure codes

to the third data store using a synchronous approach;
storing, in the third data store, the minimum number of
rateless erasure codes;

determining a remaining number of rateless erasure codes

equal to the difference between the total number and the
minimum number;

upon determining that the minimum number of rateless

erasure codes have has been stored in the third data store:

providing the remaining number of rateless erasure
codes to the third data store using an asynchronous
approach, where providing the remaining number of
rateless erasure codes to the third data store using the
asynchronous approach includes buffering one or
more rateless erasure codes in the second data store
before providing the one or more rateless erasure
codes to the third data store;

storing, in the third data store, the remaining number of
rateless erasure codes; and

upon determining that the total number of rateless erasure

codes has been stored by the third data store, sending a
signal to the first data store indicating that the total
number of rateless erasure codes has been stored in the
third data store.

2. The non-transitory computer-readable storage medium
of claim 1, where the minimum number of rateless erasure
codes is zero.

3. The non-transitory computer-readable storage medium
of claim 1, the method comprising:

upon determining that the total number of rateless erasure

codes has been stored in the third store, controlling the
first data store to release the file.

4. The non-transitory computer-readable storage medium
of claim 1, the method comprising producing the rateless
erasure codes according to a user configurable code rate.

5. The non-transitory computer-readable storage medium
of claim 1, where providing the remaining number of rateless
erasure codes to the third data store using the asynchronous
approach includes forcing a flush of a rateless erasure code
from the second data store to the third data store.

6. The non-transitory computer-readable storage medium
of claim 1, the method comprising receiving a notification
from the third data store that the minimum number of rateless
erasure codes has been stored in the third data store.

US 9,304,852 B2

15

7. The non-transitory computer-readable storage medium
of claim 6, the method comprising receiving a notification
from the third data store that the total number of rateless
erasure codes has been stored in the third data store.

8. The non-transitory computer-readable storage medium
of claim 1, the method comprising receiving a notification
from the third data store that a rateless erasure code has
become unavailable and,

upon determining that a desired redundancy level for the

file is not present, selectively re-performing a store

operation using data present in the second data store,

where the store operation comprises:

producing one or more rateless erasure codes;

selectively providing one or more rateless erasure codes
to the third data store using a synchronous approach;
or

selectively providing one or more rateless erasure codes
to the third data store using an asynchronous
approach.

9. The non-transitory computer-readable storage medium
of claim 1, the method comprising receiving a notification
from the third data store that a rateless erasure code has
become unavailable and,

upon determining that a desired redundancy level for the

file is not present, selectively re-performing a store

operation using data present in the first data store, where

the store operation comprises:

producing one or more rateless erasure codes;

selectively providing one or more rateless erasure codes
to the third data store using a synchronous approach;
or

selectively providing one or more rateless erasure codes
to the third data store using an asynchronous
approach.

10. An apparatus, comprising:

a processor;

amemory;

a set of logics; and

10

15

20

25

30

35

16

an interface that connects the processor, the memory, and

the set of logics;

the set of logics comprising:

afirst logic that produces a set of fountain codes for a file
stored in a primary data storage, where the set of
fountain codes are to be stored in an object store;

a second logic that causes a first subset of the set of
fountain codes to be provided to the object store using
a synchronous protocol, and that stores the first subset
in the object store; and

a third logic that causes a second, disjoint subset of the
set of fountain codes to be provided to the object store
using an asynchronous protocol, and that stores the
second, disjoint subset in the object store.

11. The apparatus of claim 10, where the third logic selec-
tively buffers members of the second subset as part of the
asynchronous protocol.

12. The apparatus of claim 11, where the third logic selec-
tively flushes members of the second subset to the object store
as part of the asynchronous protocol.

13. The apparatus of claim 12, where the first logic, the
second logic, or the third logic interact, substantially in par-
allel, with a plurality of objects associated with two or more
files.

14. The apparatus of claim 10, the apparatus being an
archive system positioned in a communication path between
the primary data storage and the object store.

15. The apparatus of claim 10, comprising a fourth logic
that causes the file to be released from the primary data
storage upon determining that the set of fountain codes has
been stored in the object store.

16. The apparatus of claim 15, where the fourth logic
controls the first logic, the second logic and the third logic to
store in the object store additional fountain codes for the file
upon determining that a threshold number of fountain codes
for the file are unavailable in the object store.

#* #* #* #* #*

